A Point of inflection problem

Question(a) Find the range for which the function: $f(x) = x \sin(\ln x), x > 0$ is(i) concave(ii) convex

(b) Hence find the point(s) of inflection of the function.

Solution

(a)
$$f'(x) = \sin(\ln x) + x \cos(\ln x) \times \frac{1}{x}$$

 $= \sin(\ln x) + \cos(\ln x)$ (eq 1)
 $f''(x) = \frac{\cos(\ln x) - \sin(\ln x)}{x}$ (eq 2)
 $f'''(x) = -\frac{2\cos(\ln x)}{x^2}$ (eq 3)

(i) The function f(x) is concave upwards if $f''(x) \ge 0$. (For strict concavity, we use f''(x) > 0.) $\cos(\ln x) - \sin(\ln x) \ge 0$

 $\cos(\ln x) \ge \sin(\ln x)$ (See Note 1 at the end of this article.)

By drawing sine and cosine graphs and noting the intervals, we get:

$$\ln x \in \left[(2n-1)\pi + \frac{\pi}{4}, 2n\pi + \frac{\pi}{4} \right] , n = 0, \pm 1, \pm 2, ...$$
$$x \in \left[e^{(2n-1)\pi + \frac{\pi}{4}}, e^{2n\pi + \frac{\pi}{4}} \right] , n = 0, \pm 1, \pm 2, ...$$

(ii) The function
$$f(x)$$
 is convex upwards if $f''(x) \le 0$.
 $\cos(\ln x) - \sin(\ln x) \le 0$
 $\cos(\ln x) \le \sin(\ln x)$
 $\ln x \in \left[2n\pi + \frac{\pi}{4}, (2n+1)\pi + \frac{\pi}{4}\right], n = 0, \pm 1, \pm 2, ...$
 $x \in \left[e^{2n\pi + \frac{\pi}{4}}, e^{(2n+1)\pi + \frac{\pi}{4}}\right], n = 0, \pm 1, \pm 2, ...$

(b) f''(x) changes sign as x increases through the following of points.

(1)
$$x = e^{(2n-1)\pi + \frac{\pi}{4}}$$
, $n = 0, \pm 1, \pm 2, ...$

(2)
$$x = e^{2n\pi + \frac{\pi}{4}}$$
, $n = 0, \pm 1, \pm 2, ...$

There may be two sets of points of inflection:

For the points in Set (1), the function changes from <u>convex upwards</u> to <u>concave upwards</u>. For the points in Set (2), the function changes from <u>concave upwards</u> to <u>convex upwards</u>. The function is also well-defined and continuous at the points in both Set (1) and Set (2).

The corresponding values of y can be found by substituting in $f(x) = x \sin(\ln x)$:

(1a)
$$(x, y) = \left(e^{(2n-1)\pi + \frac{\pi}{4}}, -\frac{1}{\sqrt{2}}e^{(2n-1)\pi + \frac{\pi}{4}}\right), \qquad n = 0, \pm 1, \pm 2, \dots$$

(2a) $(x, y) = \left(e^{2n\pi + \frac{\pi}{4}}, \frac{1}{\sqrt{2}}e^{2n\pi + \frac{\pi}{4}}\right) \qquad , n = 0, \pm 1, \pm 2, \dots$

Let us investigate the problem more closely.

By substituting both sets into the second derivatives in eq (2), we get:

(1b)
$$f''\left(e^{(2n-1)\pi+\frac{\pi}{4}}\right) = \frac{\cos\left[(2n-1)\pi+\frac{\pi}{4}\right] - \sin\left[(2n-1)\pi+\frac{\pi}{4}\right]}{e^{(2n-1)\pi+\frac{\pi}{4}}} = 0$$

(2b) $f''\left(e^{2n\pi+\frac{\pi}{4}}\right) = \frac{\cos\left[2n\pi+\frac{\pi}{4}\right] - \sin\left[2n\pi+\frac{\pi}{4}\right]}{e^{2n\pi+\frac{\pi}{4}}} = 0$

 \therefore <u>Both</u> set (1) and set (2) give the points of inflection.

The third derivative f'''(x) of eq (3) gives some more insight:

(1c)
$$f'''\left(e^{(2n-1)\pi+\frac{\pi}{4}}\right) = -\frac{2\cos\left[(2n-1)\pi+\frac{\pi}{4}\right]}{\left(e^{(2n-1)\pi+\frac{\pi}{4}}\right)^2} = \frac{2}{\sqrt{2}e^{(4n-2)\pi+\frac{\pi}{2}}} > 0$$

(2c) $f'''\left(e^{2n\pi+\frac{\pi}{4}}\right) = -\frac{2\cos\left[2n\pi+\frac{\pi}{4}\right]}{\left(e^{2n\pi+\frac{\pi}{4}}\right)^2} = -\frac{2}{\sqrt{2}e^{4n\pi+\frac{\pi}{2}}} < 0$

Following the result of third derivative test :

- (1d) For set (1), the function changes from <u>convex upwards</u> to <u>concave upwards</u>. ($f''(x) \le 0$ to $f''(x) \ge 0$)
- (2d) For set (2), the function changes from <u>concave upwards</u> to <u>convex upwards</u>. ($f''(x) \ge 0$ to $f''(x) \le 0$)
- Note: (1) $\cos(\ln x) \ge \sin(\ln x) \implies \tan(\ln x) \le 1$ is not correct as $\cos(\ln x)$ can be negative. (2) By setting $f''(x) = 0 \implies \cos(\ln x) = \sin(\ln x) \implies \tan(\ln x) = 1$, We get $\ln x = m\pi + \frac{\pi}{4}$, $x = e^{m\pi + \frac{\pi}{4}}$ $m = 0, \pm 1, \pm 2,..$

It is not easy to see that this set can be broken to two different sets of inflectional points. Here in fact we should take m = 2n - 1 and m = 2n cases.